
Lecture 24: Digital Signatures using RSA
Assumption

Digital Signature



RSA Public-key Encryption: Recall I

Bob wants to receive encrypted messages. So, Bob fixes n, the
number of bits in the primes he wants to choose. Bob picks
two random n-bit primes p and q. Bob computes N = p · q.
Bob samples a random e ∈ Z∗

φ(N). Bob computes d ∈ Z∗
φ(N)

such that e · d = 1 mod φ(N) using the extended GCD
algorithm. Bob set pk = (n,N, e) and trap = d .

The public-key for Bob pk is broadcast to everyone

To encrypt a message m ∈ {0, 1}n/2, Alice runs the Encpk(m)

algorithm defined as follows. Alice samples r ∈ {0, 1}n/2 and
computes c = (r∥m)e mod N. The cipher-text is c .

After receiving a cipher-text c̃ , Bob runs the decryption
algorithm Decpk,trap(c̃). Bob computes (r̃ , m̃) = c̃d mod N.

Digital Signature



RSA Public-key Encryption: Recall II

Correctness. We have seen that this public-key encryption is
always correct (relies on the fact that gcd(e, φ(N)) = 1)

Security. We have seen that this public-key encryption
scheme is secure as long as the randomness r used in every
encryption algorithm is distinct against computationally
bounded eavesdroppers (relies on the birthday bound and the
RSA assumption)

Digital Signature



Abstraction

Recall that we have seen that the function fe : Z∗
N → Z∗

N

defined by fe(x) = xe mod N is a bijection that is efficient to
evaluate. We shall abstract this concept as “Evaluation is
efficient”
Recall that the inverse function f −1

e : Z∗
N → Z∗

N is efficient to
evaluate given d , where e · d = 1 mod φ(N); otherwise, not.
We shall abstract this concept as “Inversion is inefficient”
In a public-key encryption we want that the “encryption
algorithm is efficient” and “decryption algorithm is inefficient.”
So, we used the evaluation of fe for encryption and the
inversion of fe for decryption.

Digital Signature



Digital Signature

In a digital signature scheme, the signer publishes a public-key
pk and keeps a trapdoor trap with herself
Later, if the signer wants to endorse a message m then she
uses an algorithm Signpk,trap(m) to generate a signature σ

Everyone should be able to verify that “the publisher of the
public-key pk endorses the message m̃ using the signature σ̃”
by running the verification algorithm Verpk(m̃, σ̃)”
An adversary who sees the public-key pk and a few
message-signature pairs (m1, σ1), (m2, σ2), . . . , (mk , σk)
cannot forge a valid signature σ′ on a new message m′

Digital Signature



Digital Signatures using RSA I

First observe that we want “verification to be efficient” and
“signing to be inefficient”

So, using the ideas in the “abstraction slide,” the idea is to use
“evaluation of fe” for verification and “inversion of fe” for
signing

Digital Signature



Digital Signatures using RSA II

Alice decides to endorse messages using n-bit primes. Alice
picks two random n-bit prime numbers p, q. Alice computes
N = p · q and samples a random e ∈ Z∗

φ(N). Alice computes d

such that e · d = 1 mod φ(N). Alice sets pk = (n,N, e) and
trap = d

To sign a message m ∈ {0, 1}n, Alice runs Signpk,trap(m)

defined as follows. Compute σ = md mod N.

To verify a message-signature pair (m̃, σ̃), Bob runs the
verification algorithm Verpub(m̃, σ̃) defined as follows. Output
m̃ == σ̃e mod N.

Digital Signature



Digital Signatures using RSA III

THIS SCHEME IS INSECURE!

Digital Signature



Attack on the Previous Scheme

Pick any σ′ ∈ Z∗
N

Compute m′ = (σ′)e mod N

Note that this is an efficient attack
Note that we did not even need to see any other
message-signature pairs
Although, we do not have any “control” over the message. It is
a valid forgery nonetheless

Digital Signature



Fixing our original construction I

We want to use the fact that in the previous forgery attack,
the adversary did not have any control over the message that
was being signed

So, here is the idea underlying the fix. We shall pick a random
r ∈ {0, 1}n/2 and include r in the public-key pk. To sign a
message m ∈ {0, 1}n/2, we compute (r∥m) and compute the
signature σ = (r∥m)d mod N. To verify a message-signature
pair (m̃, σ̃), Bob (the verifier) checks (r , m̃) == (σ̃)e mod N

The formal scheme is presented next

Digital Signature



Fixing our original construction II

Gen(1n):
Pick random n-bit primes p and q.
Compute N and φ(N)

Sample e ∈ Z∗
φ(N)

Compute d such that e · d = 1 mod φ(N)

Sample random r ∈ {0, 1}n/2

Return pk = (n,N, e, r) and trap = d

Digital Signature



Fixing our original construction III

Signpk,trap(m):
Return (r∥m)d mod N

Verpk(m̃, σ̃):
Return (r∥m̃) == σ̃e mod N

In the next lecture we shall learn how to sign arbitrary-length
messages m ∈ {0, 1}∗

Digital Signature


