Lecture 24: Digital Signatures using RSA Assumption

RSA Public-key Encryption: Recall

- Bob wants to receive encrypted messages. So, Bob fixes n, the number of bits in the primes he wants to choose. Bob picks two random n-bit primes p and q. Bob computes $N=p \cdot q$. Bob samples a random $e \in \mathbb{Z}_{\varphi(N)}^{*}$. Bob computes $d \in \mathbb{Z}_{\varphi(N)}^{*}$ such that $e \cdot d=1 \bmod \varphi(N)$ using the extended GCD algorithm. Bob set $\mathrm{pk}=(n, N, e)$ and trap $=d$.
- The public-key for Bob pk is broadcast to everyone
- To encrypt a message $m \in\{0,1\}^{n / 2}$, Alice runs the $\operatorname{Enc}_{p} k(m)$ algorithm defined as follows. Alice samples $r \in\{0,1\}^{n / 2}$ and computes $c=(r \| m)^{e} \bmod N$. The cipher-text is c.
- After receiving a cipher-text \widetilde{c}, Bob runs the decryption algorithm $\operatorname{Dec}_{p k, \text { trap }}(\widetilde{c})$. Bob computes $(\widetilde{r}, \widetilde{m})=\widetilde{c}^{d} \bmod N$.
- Correctness. We have seen that this public-key encryption is always correct (relies on the fact that $\operatorname{gcd}(e, \varphi(N))=1$)
- Security. We have seen that this public-key encryption scheme is secure as long as the randomness r used in every encryption algorithm is distinct against computationally bounded eavesdroppers (relies on the birthday bound and the RSA assumption)

Abstraction

- Recall that we have seen that the function $f_{e}: \mathbb{Z}_{N}^{*} \rightarrow \mathbb{Z}_{N}^{*}$ defined by $f_{e}(x)=x^{e} \bmod N$ is a bijection that is efficient to evaluate. We shall abstract this concept as "Evaluation is efficient"
- Recall that the inverse function $f_{e}^{-1}: \mathbb{Z}_{N}^{*} \rightarrow \mathbb{Z}_{N}^{*}$ is efficient to evaluate given d, where $e \cdot d=1 \bmod \varphi(N)$; otherwise, not. We shall abstract this concept as "Inversion is inefficient"
- In a public-key encryption we want that the "encryption algorithm is efficient" and "decryption algorithm is inefficient." So, we used the evaluation of f_{e} for encryption and the inversion of f_{e} for decryption.

Digital Signature

- In a digital signature scheme, the signer publishes a public-key pk and keeps a trapdoor trap with herself
- Later, if the signer wants to endorse a message m then she uses an algorithm $\operatorname{Sign}_{\mathrm{pk}, \text { trap }}(m)$ to generate a signature σ
- Everyone should be able to verify that "the publisher of the public-key pk endorses the message \widetilde{m} using the signature $\widetilde{\sigma}$ " by running the verification algorithm $\operatorname{Ver}_{\mathrm{pk}}(\widetilde{m}, \widetilde{\sigma})$ "
- An adversary who sees the public-key pk and a few message-signature pairs $\left(m_{1}, \sigma_{1}\right),\left(m_{2}, \sigma_{2}\right), \ldots,\left(m_{k}, \sigma_{k}\right)$ cannot forge a valid signature σ^{\prime} on a new message m^{\prime}
- First observe that we want "verification to be efficient" and "signing to be inefficient"
- So, using the ideas in the "abstraction slide," the idea is to use "evaluation of f_{e} " for verification and "inversion of f_{e} " for signing
- Alice decides to endorse messages using n-bit primes. Alice picks two random n-bit prime numbers p, q. Alice computes $N=p \cdot q$ and samples a random $e \in \mathbb{Z}_{\varphi(N)}^{*}$. Alice computes d such that $e \cdot d=1 \bmod \varphi(N)$. Alice sets $\mathrm{pk}=(n, N, e)$ and trap $=d$
- To sign a message $m \in\{0,1\}^{n}$, Alice runs $\operatorname{Sign}_{\text {pk,trap }}(m)$ defined as follows. Compute $\sigma=m^{d} \bmod N$.
- To verify a message-signature pair $(\widetilde{m}, \widetilde{\sigma})$, Bob runs the verification algorithm $\operatorname{Ver}_{\text {pub }}(\widetilde{m}, \widetilde{\sigma})$ defined as follows. Output $\widetilde{m}==\tilde{\sigma}^{e} \bmod N$.

THIS SCHEME IS INSECURE!

Attack on the Previous Scheme

- Pick any $\sigma^{\prime} \in \mathbb{Z}_{N}^{*}$
- Compute $m^{\prime}=\left(\sigma^{\prime}\right)^{e} \bmod N$
- Note that this is an efficient attack
- Note that we did not even need to see any other message-signature pairs
- Although, we do not have any "control" over the message. It is a valid forgery nonetheless

Fixing our original construction

- We want to use the fact that in the previous forgery attack, the adversary did not have any control over the message that was being signed
- So, here is the idea underlying the fix. We shall pick a random $r \in\{0,1\}^{n / 2}$ and include r in the public-key pk. To sign a message $m \in\{0,1\}^{n / 2}$, we compute $(r \| m)$ and compute the signature $\sigma=(r \| m)^{d} \bmod N$. To verify a message-signature pair $(\widetilde{m}, \widetilde{\sigma})$, Bob (the verifier) checks $(r, \widetilde{m})==(\widetilde{\sigma})^{e} \bmod N$
- The formal scheme is presented next
$\operatorname{Gen}\left(1^{n}\right)$:
- Pick random n-bit primes p and q.
- Compute N and $\varphi(N)$
- Sample $e \in \mathbb{Z}_{\varphi(N)}^{*}$
- Compute d such that $e \cdot d=1 \bmod \varphi(N)$
- Sample random $r \in\{0,1\}^{n / 2}$
- Return pk $=(n, N, e, r)$ and trap $=d$
$\operatorname{Sign}_{\mathrm{pk}, \text { trap }}(m)$:
- Return $(r \| m)^{d} \bmod N$
$\operatorname{Ver}_{\mathrm{pk}}(\widetilde{m}, \widetilde{\sigma}):$
- Return $(r \| \widetilde{m})==\tilde{\sigma}^{e} \bmod N$

In the next lecture we shall learn how to sign arbitrary-length messages $m \in\{0,1\}^{*}$

