Lecture 24: Digital Signatures using RSA Assumption

- Bob wants to receive encrypted messages. So, Bob fixes n, the number of bits in the primes he wants to choose. Bob picks two random n-bit primes p and q. Bob computes $N=p\cdot q$. Bob samples a random $e\in\mathbb{Z}_{\varphi(N)}^*$. Bob computes $d\in\mathbb{Z}_{\varphi(N)}^*$ such that $e\cdot d=1\mod\varphi(N)$ using the extended GCD algorithm. Bob set $\mathrm{pk}=(n,N,e)$ and $\mathrm{trap}=d$.
- The public-key for Bob pk is broadcast to everyone
- To encrypt a message $m \in \{0,1\}^{n/2}$, Alice runs the $\operatorname{Enc}_p k(m)$ algorithm defined as follows. Alice samples $r \in \{0,1\}^{n/2}$ and computes $c = (r || m)^e \mod N$. The cipher-text is c.
- After receiving a cipher-text \widetilde{c} , Bob runs the decryption algorithm $\operatorname{Dec}_{pk,\operatorname{trap}}(\widetilde{c})$. Bob computes $(\widetilde{r},\widetilde{m})=\widetilde{c}^d \mod N$.

- Correctness. We have seen that this public-key encryption is always correct (relies on the fact that $gcd(e, \varphi(N)) = 1$)
- Security. We have seen that this public-key encryption scheme is secure as long as the randomness r used in every encryption algorithm is distinct against computationally bounded eavesdroppers (relies on the birthday bound and the RSA assumption)

Abstraction

- Recall that we have seen that the function $f_e \colon \mathbb{Z}_N^* \to \mathbb{Z}_N^*$ defined by $f_e(x) = x^e \mod N$ is a bijection that is efficient to evaluate. We shall abstract this concept as "Evaluation is efficient"
- Recall that the inverse function $f_e^{-1} \colon \mathbb{Z}_N^* \to \mathbb{Z}_N^*$ is efficient to evaluate given d, where $e \cdot d = 1 \mod \varphi(N)$; otherwise, not. We shall abstract this concept as "Inversion is inefficient"
- In a public-key encryption we want that the "encryption algorithm is efficient" and "decryption algorithm is inefficient."
 So, we used the evaluation of f_e for encryption and the inversion of f_e for decryption.

Digital Signature

- In a digital signature scheme, the signer publishes a public-key pk and keeps a trapdoor trap with herself
- Later, if the signer wants to endorse a message m then she uses an algorithm $\operatorname{Sign}_{pk,\operatorname{trap}}(m)$ to generate a signature σ
- Everyone should be able to verify that "the publisher of the public-key pk endorses the message \widetilde{m} using the signature $\widetilde{\sigma}$ " by running the verification algorithm $\operatorname{Ver}_{\mathsf{pk}}(\widetilde{m},\widetilde{\sigma})$ "
- An adversary who sees the public-key pk and a few message-signature pairs $(m_1, \sigma_1), (m_2, \sigma_2), \ldots, (m_k, \sigma_k)$ cannot forge a valid signature σ' on a new message m'

- First observe that we want "verification to be efficient" and "signing to be inefficient"
- So, using the ideas in the "abstraction slide," the idea is to use "evaluation of f_e" for verification and "inversion of f_e" for signing

- Alice decides to endorse messages using n-bit primes. Alice picks two random n-bit prime numbers p,q. Alice computes $N=p\cdot q$ and samples a random $e\in\mathbb{Z}_{\varphi(N)}^*$. Alice computes d such that $e\cdot d=1\mod\varphi(N)$. Alice sets $\mathrm{pk}=(n,N,e)$ and $\mathrm{trap}=d$
- To sign a message $m \in \{0,1\}^n$, Alice runs $\operatorname{Sign}_{\operatorname{pk},\operatorname{trap}}(m)$ defined as follows. Compute $\sigma = m^d \mod N$.
- To verify a message-signature pair $(\widetilde{m}, \widetilde{\sigma})$, Bob runs the verification algorithm $\mathrm{Ver}_{\mathrm{pub}}(\widetilde{m}, \widetilde{\sigma})$ defined as follows. Output $\widetilde{m} == \widetilde{\sigma}^e \mod N$.

THIS SCHEME IS INSECURE!

Attack on the Previous Scheme

- ullet Pick any $\sigma' \in \mathbb{Z}_N^*$
- Compute $m' = (\sigma')^e \mod N$
- Note that this is an efficient attack
- Note that we did not even need to see any other message-signature pairs
- Although, we do not have any "control" over the message. It is a valid forgery nonetheless

- We want to use the fact that in the previous forgery attack, the adversary did not have any control over the message that was being signed
- So, here is the idea underlying the fix. We shall pick a random $r \in \{0,1\}^{n/2}$ and include r in the public-key pk. To sign a message $m \in \{0,1\}^{n/2}$, we compute (r||m) and compute the signature $\sigma = (r||m)^d \mod N$. To verify a message-signature pair $(\widetilde{m},\widetilde{\sigma})$, Bob (the verifier) checks $(r,\widetilde{m}) == (\widetilde{\sigma})^e \mod N$
- The formal scheme is presented next

$Gen(1^n)$:

- Pick random n-bit primes p and q.
- Compute N and $\varphi(N)$
- ullet Sample $e\in \mathbb{Z}_{arphi(N)}^*$
- ullet Compute d such that $e \cdot d = 1 \mod \varphi(N)$
- Sample random $r \in \{0,1\}^{n/2}$
- Return pk = (n, N, e, r) and trap = d

 $Sign_{pk,trap}(m)$:

• Return $(r||m)^d \mod N$

 $\operatorname{Ver}_{\operatorname{pk}}(\widetilde{m},\widetilde{\sigma})$:

• Return $(r || \widetilde{m}) == \widetilde{\sigma}^e \mod N$

In the next lecture we shall learn how to sign arbitrary-length messages $m \in \{0,1\}^*$